ARF6-Regulated Shedding of Tumor Cell-Derived Plasma Membrane Microvesicles
نویسندگان
چکیده
BACKGROUND Increased mitogen-activated protein kinase (MAPK) signaling, small GTPase activation, cytoskeletal rearrangements, and the directed targeting of proteases to sites of extracellular matrix degradation all accompany the process of tumor cell invasion. Several studies have implicated the small GTP-binding protein ARF6 in tumor cell invasion, although the molecular basis by which ARF6 facilitates this process is unclear. RESULTS We show that the ARF6 GTP/GDP cycle regulates the release of protease-loaded plasma membrane-derived microvesicles from tumor cells into the surrounding environment. To enable microvesicle shedding, ARF6-GTP-dependent activation of phospholipase D promotes the recruitment of the extracellular signal-regulated kinase (ERK) to the plasma membrane where, in turn, ERK phosphorylates and activates myosin light-chain kinase (MLCK). MLCK-mediated MLC phosphorylation is required for microvesicle release. Inhibition of ARF6 activation is accompanied by PKC-mediated phosphorylation of MLC, which blocks microvesicle shedding. Protein cargo appears to be selectively sorted into microvesicles, and adhesion to the extracellular matrix (ECM) is facilitated by microvesicle-associated integrin receptors. CONCLUSIONS Microvesicle shedding in tumor cells occurs via an actomyosin-based membrane abscission mechanism that is regulated by nucleotide cycling on ARF6. Microvesicle shedding appears to release selected cellular components, particularly those involved in cell adhesion and motility, into the surrounding environment. These findings suggest that ARF6 activation and the proteolytic activities of microvesicles, both of which are thought to correlate directly with tumor progression, could potentially serve as biomarkers for disease.
منابع مشابه
Increased shedding of microvesicles from intimal smooth muscle cells in athero-prone areas of the human aorta: implications for understanding of the predisease stage.
OBJECTIVE This study evaluated whether a change in the content of matrix microvesicles might occur at the preatherosclerotic stage. METHODS Applying quantitative electron microscopic and immunohistochemical analyses, two areas of grossly normal segments of the thoracic aorta were compared: atherosclerosis-prone (AP) areas, situated at the dorsal aspect of the aorta along the rows of intercost...
متن کاملMicrovesicles: mediators of extracellular communication during cancer progression.
Microvesicles are generated by the outward budding and fission of membrane vesicles from the cell surface. Recent studies suggest that microvesicle shedding is a highly regulated process that occurs in a spectrum of cell types and, more frequently, in tumor cells. Microvesicles have been widely detected in various biological fluids including peripheral blood, urine and ascitic fluids, and their...
متن کاملRole of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane
The platelet plasma membrane is lined by a membrane skeleton that appears to contain short actin filaments cross-linked by actin-binding protein. Actin-binding protein is in turn associated with specific plasma membrane glycoproteins. The aim of this study was to determine whether the membrane skeleton regulates properties of the plasma membrane. Platelets were incubated with agents that disrup...
متن کاملMembrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis.
Tumor microenvironment is enriched in plasma membrane microvesicles (MV) shed from all cell types that constitute the tumor mass, reflecting the antigenic profile of the cells they originate from. Fibroblasts and tumor cells mutually communicate within tumor microenvironment. Recent evidences suggest that tumor-derived MVs (TMV) exert a broad array of biological functions in cell-to-cell commun...
متن کاملTissue Factor Prothrombotic Activity Is Regulated by Integrin-arf6 Trafficking.
OBJECTIVE Coagulation initiation by tissue factor (TF) is regulated by cellular inhibitors, cell surface availability of procoagulant phosphatidylserine, and thiol-disulfide exchange. How these mechanisms contribute to keeping TF in a noncoagulant state and to generating prothrombotic TF remain incompletely understood. APPROACH AND RESULTS Here, we study the activation of TF in primary macrop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 19 شماره
صفحات -
تاریخ انتشار 2009